Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Shan Gao, ${ }^{\text {a }}$ Zhi-Biao Zhu, ${ }^{\text {a }}$
Li-Hua Huo ${ }^{\text {a }}$ and
Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\text {* }}$

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080,
People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.017$
$w R$ factor $=0.046$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Polymeric triaquabis (μ_{3}-3-carboxybenzenesulfonato)barium(II)

The Ba atom in the title polymeric compound, poly[[triaqua-barium(II)]-di- μ_{3}-3-carboxybenzenesulfonato] [$\mathrm{Ba}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{5}-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, exists in a nine-coordinate tricapped trigonal prismatic geometry; the dianionic units engage in μ_{3}-bridging, giving a three-dimensional network. The crystal packing network is dominated by hydrogen bonds.

Comment

In the crystal structure of the compound having the empirical formulation $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Ba}$, a pair of 3-carboxybenzenesulfonate monoanionic ligands bind through their negatively charged sulfonate groups and the carbonyl O atoms of carboxyl groups to two Ba atoms; the two anions are engaged with adjacent dinuclear entities to form a ladder motif, the μ_{3}-bridging 3-carboxybenzenesulfonate anions serving as the rungs of the ladder (Ma et al., 2003). That the hydroxyl substituents do not appear to serve any function led to the present study on the barium derivative of 3-carboxybenzenesulfonic acid. The title compound, (I), also has the dianionic units engaged in a similar type of μ_{3}-bridging (Fig. 1);

however, the compound instead adopts a three-dimensional network structure although its Ba atom is also nine-coordinate

Received 1 February 2005
Accepted 7 February 2005
Online 12 February 2005
(Fig. 2). The crystal packing network is dominated by hydrogen bonds (Table 2).

Experimental

Barium chloride dihydrate ($1.22 \mathrm{~g}, 5 \mathrm{mmol}$) was added to an aqueous solution of 3 -carboxybenzenesulfonic acid $(1.01 \mathrm{~g}, 5 \mathrm{mmol})$. The mixture was stirred to dissolve the reactants. Colourless crystals were deposited from the filtered solution after several days. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BaO}_{13} \mathrm{~S}_{2}$: C 28.32 , $\mathrm{H} 2.72 \%$; found: C $28.34, \mathrm{H}$ 2.71%.

Crystal data

$\left[\mathrm{Ba}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=593.73$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=10.259$ (2) A
$b=8.775$ (2) \AA
$c=21.813$ (4) \AA
$\beta=101.93(3)^{\circ}$
$V=1921.2(7) \AA^{3}$
$Z=4$
Data collection
Rigaki R-AXIS RAPID IP
\quad diffractometer
ω scans
Absorption correction: multi-scan
$\quad(A B S C O R ;$ Higashi, 1995)
$T_{\min }=0.392, T_{\max }=0.636$
18503 measured reflections

$$
D_{x}=2.053 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 17416 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=2.35 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Block, colourless
$0.34 \times 0.26 \times 0.19 \mathrm{~mm}$

> 4402 independent reflections
> 4132 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.017$
> $\theta_{\max }=27.5^{\circ}$
> $h=-13 \rightarrow 13$
> $k=-11 \rightarrow 11$
> $l=-28 \rightarrow 28$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.046$
$S=1.01$
4402 reflections
303 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0311 P)^{2}\right.$
$+0.7392 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.52 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ba1-O1	2.754 (2)	$\mathrm{Ba} 1-\mathrm{O} 10^{\text {iv }}$	2.718 (2)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {i }}$	2.777 (1)	$\mathrm{Ba} 1-\mathrm{O} 1 w$	2.739 (2)
$\mathrm{Ba} 1-\mathrm{O} 5^{\text {ii }}$	2.799 (2)	$\mathrm{Ba} 1-\mathrm{O} 2 w$	2.969 (2)
Ba1-O6	2.765 (2)	$\mathrm{Ba} 1-\mathrm{O} 3 w$	3.276 (2)
$\mathrm{Ba} 1-\mathrm{O} 7{ }^{\text {iii }}$	2.834 (1)		
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 10^{\text {iv }}$	123.24 (5)	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 1 w$	78.13 (4)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	77.96 (4)	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2 w$	117.50 (4)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{2 i}$	69.23 (5)	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 3 w$	118.83 (5)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 6$	87.20 (4)	$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O} 7^{\text {iii }}$	97.81 (5)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 7^{\text {iii }}$	140.91 (4)	$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O} 10^{\text {iv }}$	124.72 (4)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 1 w$	81.14 (4)	O6-Ba1-O1w	150.39 (4)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2 w$	143.70 (4)	$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O} 2 w$	64.13 (4)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 3 w$	63.72 (4)	$\mathrm{O} 6-\mathrm{Ba} 1-\mathrm{O} 3 w$	137.69 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 5^{\mathrm{ii}}$	132.67 (4)	$\mathrm{O} 7{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 10^{\text {iv }}$	85.26 (5)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 6$	72.97 (5)	$\mathrm{O} 7^{\mathrm{iii}}-\mathrm{Ba} 1-\mathrm{O} 1 w$	75.59 (5)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 7^{\text {iii }}$	140.60 (4)	$\mathrm{O} 7^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2 w$	68.90 (4)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 10^{\mathrm{iv}}$	70.91 (5)	$\mathrm{O} 7^{\mathrm{iii}}-\mathrm{Ba} 1-\mathrm{O} 3 w$	124.28 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1 w$	129.84 (5)	$\mathrm{O} 10^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 1 w$	84.00 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2 w$	72.80 (4)	$\mathrm{O} 10^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 2 w$	66.02 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 3 w$	71.40 (5)	$\mathrm{O} 10^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{O} 3 w$	61.85 (5)
$\mathrm{O} 5{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 6$	72.29 (4)	$\mathrm{O} 1 w-\mathrm{Ba} 1-\mathrm{O} 2 w$	134.56 (4)
$\mathrm{O} 5^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 7^{\text {iii }}$	75.47 (5)	$\mathrm{O} 1 w-\mathrm{Ba} 1-\mathrm{O} 3 w$	58.46 (5)
$\mathrm{O} 5{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 10^{\mathrm{iv}}$	156.37 (4)	$\mathrm{O} 2 w-\mathrm{Ba} 1-\mathrm{O} 3 w$	123.63 (4)

